Morphological diversity of medusan lineages constrained by animal-fluid interactions.
نویسندگان
چکیده
Cnidarian medusae, commonly known as jellyfish, represent the earliest known animal taxa to achieve locomotion using muscle power. Propulsion by medusae requires the force of bell contraction to generate forward thrust. However, thrust production is limited in medusae by the primitive structure of their epitheliomuscular cells. This paper demonstrates that constraints in available locomotor muscular force result in a trade-off between high-thrust swimming via jet propulsion and high-efficiency swimming via a combined jet-paddling propulsion. This trade-off is reflected in the morphological diversity of medusae, which exhibit a range of fineness ratios (i.e. the ratio between bell height and diameter) and small body size in the high-thrust regime, and low fineness ratios and large body size in the high-efficiency regime. A quantitative model of the animal-fluid interactions that dictate this trade-off is developed and validated by comparison with morphological data collected from 660 extant medusan species ranging in size from 300 microm to over 2 m. These results demonstrate a biomechanical basis linking fluid dynamics and the evolution of medusan bell morphology. We believe these to be the organising principles for muscle-driven motility in Cnidaria.
منابع مشابه
Biomimetic and Live Medusae Reveal the Mechanistic Advantages of a Flexible Bell Margin
Flexible bell margins are characteristic components of rowing medusan morphologies and are expected to contribute towards their high propulsive efficiency. However, the mechanistic basis of thrust augmentation by flexible propulsors remained unresolved, so the impact of bell margin flexibility on medusan swimming has also remained unresolved. We used biomimetic robotic jellyfish vehicles to elu...
متن کاملMedusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences
Medusae were the earliest animals to evolve muscle-powered swimming in the seas. Although medusae have achieved diverse and prominent ecological roles throughout the world’s oceans, we argue that the primitive organization of cnidarian muscle tissue limits force production and, hence, the mechanical alternatives for swimming bell function. We use a recently developed model comparing the potenti...
متن کاملGenetic relationships of the Portuguese Lidia bovine populations
To clarify the genetic relationships among the Lidia breed lineages and two main Portuguese Lidia bovine populations, Casta Portuguesa and Brava dos Açores, 24 autosomal microsatellites were analyzed in 120 samples. Brava dos Açores showed the highest observed and expected heterozygosity (0.73 and 0.70, respectively) while Casta Portuguesa showed the lowest observed and expected heterozygosity ...
متن کاملMorphological and molecular diversity of Lake Baikal candonid ostracods, with description of a new genus
Uncoupling between molecular and morphological evolution is common in many animal and plant lineages. This is especially frequent among groups living in ancient deep lakes, because these ecosystems promote rapid morphological diversification, and has already been demonstrated for Tanganyika cychlid fishes and Baikal amphipods. Ostracods are also very diverse in these ecosystems, with 107 candon...
متن کاملMicrosatellite loci analysis for the genetic variability and paternal lineages in Iranian native dogs
Genetic variation among the individuals is considered as an important tool for conservation of livestock animals. This study was conducted to analyze the genetic variation, phylogenetic relationship and paternal lineages among Iranian dog populations using seventeen autosomal and Y chromosome-specific microsatellite markers. Total DNAs of the samples were extracted and applied for genotype anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 210 Pt 11 شماره
صفحات -
تاریخ انتشار 2007